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Kinetics of enthalpy relaxation in polymeric glasses
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Summary

Constitutive equations are developed for the kinetics of enthalpy relaxation in poly-
meric glasses. An amorphous polymer is treated as an ensemble of cooperatively
rearranged regions (CRR). Rearrangement of a CRR is modeled as a hop from one
potential well on the energy landscape to another. The probability for changing traps
in a hop is determined by the difference between the current and equilibrium con-
centrations of CRRs. A nonlinear parabolic equation is derived for the distribution
function of CRRs. It is applied to predict entropy recovery after a thermal jump. Fair
agreement is demonstrated between results of numerical simulation and experimental
data for poly(vinyl acetate) and poly(methyl methacrylate) in the vicinity of the glass
transition temperature.

Introduction

This note is concerned with the kinetics of enthalpy recovery in amorphous glassy
polymers. Structural relaxation [physical aging (1)] in disordered media (spin glasses,
supercooled liquids, structural and orientational glasses, etc.) has attracted substan-
tial attention in the past decade (2-5). This phenomenon is conventionally studied in
quench and wait tests, where a specimen equilibrated at some temperature TO above
the glass transition temperature Tg is rapidly cooled to a temperature T < Tg and is
isothermally annealed at the temperature T,

It is evidenced as the strong effect of the waiting time tw (the time elapsed upon
quench before the beginning of a test) on physical properties of the sample.

Several molecular concepts have been developed for the out-of-equilibrium dy-
namics in disordered media (4-7). However, it is conventionally presumed that even
the mode-coupling theory (the most advanced among molecular models) fails to ade-
quately describe slowing down in the response of amorphous polymers below the glass
transition temperature. This is explained by the neglect of cooperativity in reorienta-
tion of long chains that plays the key role in kinetic phenomena in the sub Tg region
(6).

Our objective is to describe enthalpy relaxation in amorphous polymers using the
trapping concept (8.9). We derive a nonlinear differential equation for diffusion of
CRRs over the energy landscape. This equation is verified by comparing results of
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numerical simulation with experimental data for poly(vinyl acetate) and poly(methyl
methacrylate).

Diffusion over the energy landscape
Following Ref. (10), we treat an amorphous polymer as an ensemble of independent
cooperatively rearranged regions (CRR). A CRR is thought of as a globule consisting
of scores of strands of long chains (9). The characteristic length of a relaxing region
in the vicinity of the glass transition temperature amounts to several nanometers
(11). In the phase space, a CRR is modeled as a point located at the bottom level
of its potential well. At random times, the point hops to higher energy levels as it is
thermally agitated. We adopt the transition-state theory (12) and suppose that a CRR
changes its trap [because of reorientation of chains caused by large-angle rotations of
neighboring strands (6)] when it reaches some reference energy level. The energy of a
potential well with respect to the reference state is denoted by w. For definiteness, it
is assumed that w > 0 for any trap and w = 0 for the reference state.

Denote by q(z)dz the probability for a CRR to reach the energy level that exceeds
the bottom level of its potential well by some value located in the interval [z, z + dz].
In accord with Ref. (4), we set q(z) = A exp(�Az), where A is a consonant. The
probability for a CRR in a trap with potential energy w to reach the reference state
in an arbitrary hop is given by

With reference to (1), we suppose that the kinetics of rearrangement is governed by
some material (internal) time � and define the attempt rate � as the average number
of hops in a potential well per unit internal time. The quantity � is assumed to be
constant. Multiplying � by the probability to reach the reference state in a hop Q,
we find the rate of rearrangement

(2)

Denote by � the concentration of traps per unit mass, and by p(�, w) the distribution
function (at time �) for traps with potential energy w. The number of relaxing regions
(per unit mass) trapped in cages with energies belonging to the interval [w, w+dw] and
rearranged during the interval of time [�,�+d�] is �R(w)p(�, w)dwd�. Unlike previous
studies (13, 15), we assume that not all relaxing regions change their traps when they
reach the reference energy level and denote by F(�, w) the ratio of the number of
CRRs returning to their traps to the number of those reaching the reference state.
The number of CRRs leaving their cages (with the energy located within the interval
[w, w + dw]) per unit mass and unit internal time reads �[1 � F(�, w)]R(w)p(�, w)dw.
The exchange of CRRs is assumed to take place between the nearest neighbors on
the energy landscape, that is between traps with the energy [w, w + dw] and traps
with the energies [w � dw, w] and [w + dw, w + 2dw]. At the molecular level, this
exchange is interpreted as creation and breakage of temporary links (entanglements,
physical crosslinks, van der Waals forces, etc.) between strands forming a CRR. The
balance law for the number of CRRs trapped in cages with the energy belonging to
the interval [w, w + dw] is given by

(3)

where the subscript indices "�" and "+" refer to the intervals [w � dw, w] and [w +
dw, w + 2dw]. Expanding the right-hand side of Eq. (3) into the Taylor series, using



305

Eq. (2) and introducing the notation                , we arrive at the differential equation
for diffusion over the energy landscape

Formula (4) may be treated as an extension of multiparameter equations for the
kinetics of structural relaxation (16,17), where a finite number of order parameters
[with no transparent physical meaning (18)] is replaced by a continuous distribution of
energies of traps. An important advantage of Eq. (4) over the relationships suggested
in Refs. (19,20) is that it does not impose restrictions on the equilibrium density of
traps p� (w), provided that F = 1 in the thermal equilibrium. Assuming this condition
to be satisfied and referring to the Metropolis rule, we set

where � > 0 is a material parameter. According to the random energy model (21),
the initial distribution, p0(w), and the equilibrium distribution, p�(w), of CRRs are
Gaussian.

where W, �0, �� are adjustable parameters. Equations (6) may be accepted, provided
that for any t > 0.
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It follows from Eq. (6) that the average equilibrium energies of CRRs are indepen-
dent of temperature, whereas their variances are strongly affected by T. This is in
agreement with a conventional assumption regarding the growth in the ruggedness of
the energy landscape with a decrease in temperature (4.22).

Enthalpy relaxation

The level of disorder in an ensemble of CRRs is characterized by the configurational
entropy per CRR

where kB is Boltzmann's constant (23). Adopting the concept of material time with
an entropy driven internal clock (1), we set

The shift fact or a reads

where �0 is a material parameter and � = kB�0.
The configurational enthalpy per CRR, h(t), is expressed in terms of the configu-

rational entropy, s(t), by means of the conventional formula

Integration of this equality for a one-step thermal test. Eq. (1), implies the formula for
the enthalpy per unit mass H = �h. Our main hypothesis is that relaxing enthalpy
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per unit mass �H(t) coincides with changes in the configurational enthalpy, �H(t) =
H(t) � H(0), which results in the formula

with � = kBT�. Introducing the dimensionless variables w = Aw, t = t/t0, where t0 is
the characteristic time of aging, and setting � = A2

�t0, W = AW and �k = A�k, we
arrive at constitutive equations (4) to (6) and (8) to (10) with 7 adjustable parameters:
W, �0, ��, �, �, � and �. It follows from Eq. (4) that the quantities W and � are
interrelated: when one of them is chosen arbitrarily, the other characterizes the time
scale. For convenience of numerical simulation, we fix the parameter W (which ensures
that Eq. (7) is satisfied) and determine � by matching observations. Because both
constants, � and �, characterize the time scale, one of them may be chosen a priori.
For definiteness, we assume that � = 1.0. To determine the constant �, we adopt the
free volume concept and assume that any CRR contains some amount of free volume
(hole). Because the volume concentrations of holes for poly(methyl methacrylate)
and poly(vinyl acetate) are unknown, we accept the value � = 7.3 · 1026 m-3 found
for polyethylene near its glass transition temperature by PALS (24). Taking mass
density p = 1.2 g/cm3 and T = 350 K, we obtain � = 3.2 J/g. This estimate reduces
the number of material constants to four. The latter number is comparable with the
number of adjustable parameters in phenomenological models where observations are
fitted using the stretched exponential function. As examples, we refer to a model with
4 constants (25.26) that combines the Kohlrausch�Williams�Watts (KWW) formula
with the Adam�Gibbs equation for the characteristic time of structural relaxation �
and to a model with 5 constants (27.28) that employs the KWW equation together
with the Narayanaswamy formula for �.
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Validation of the model

We begin with fitting observations for poly(methyl methacrylate) in the sub�Tg re-
gion. For a description of specimens and the experimental procedure, we refer to
(29). First, we match experimental data at the lowest temperature T = 375 K and
determine �0, ��, � and � (which ensure the best approximation of observations) by
using the steepest-descent procedure. We fix the parameter �0 = 0.179 and proceed
approximation of experimental data at higher temperatures with three adjustable pa-
rameters, �, �� and �. Figure 1 reveals fair agreement between observations and
results of numerical analysis.

To demonstrate that the model adequately describes observations for other poly-
mers as well, we fit experimental data for poly(vinyl acetate) near its glass transition
point. The experimental procedure and specimens are exposed in detail in (30). First,
we fit experimental data at the lowest temperature T = 303 K and determine the pa-
rameter �0 = 0.09 which ensures the best approximation of observations. Afterwards,
we repeat calculations for other temperatures and find ��, � and � as functions of
temperature T. Figure 2 demonstrates good correspondence between results of nu-
merical simulation and experimental data.

The quantities ��, � and � are plotted versus the degree of supercooling �T =
Tg � T in Figures 3 to 5. The dependences ��(T), �(T) and �(T) are correctly
approximated by the "linear" functions

where ak, bk and ck are adjustable parameters. Following Ref. (31), we define the
critical temperature Tcr as a temperature at which the energy landscape becomes
homogenous and �� vanishes. It follows from Eq. (11) and Figure 3 that for
poly(vinyl acetate). Tcr = Tg + 8.0 K which is quite close to Tcr = Tg + 9.4 K found by
using experimental data in mechanical tests (31). In the vicinity of Tg, the apparent
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activation energy �E is given by

where R is gas constant. This formula together with Eq. (11) implies that �E =
b1RTg

2 ln 10. It follows from this equality and Figure 4 that �E = 277.71 kJ/mol for
PMMA and �E = 48.26 kJ/mol for PVA, which are typical values of the activation
energy for these polymers (32). According to Figure 5, the parameter � vanishes
(i.e. the internal time � coincides with the absolute time t) at the temperatures
T� = Tg - 30.68 K for PMMA and T� = Tg � 40.84 K for PVA, which belong to the
thermal interval between the Kauzmann temperature and the glass transition point.

Concluding remarks

A model has been derived for enthalpy relaxation in amorphous glassy polymers after
thermal jumps. Adjustable parameters in constitutive equations are found by fit-
ting experimental data for poly(methyl methacrylate) and poly(vinyl acetate). The
following conclusions are drawn from numerical simulation:

1. constitutive equations adequately describe structural relaxation in the sub�Tg

region.

2. the growth of the degree of supercooling �T leads to an increase in �� (the
growth of ruggedness of the energy landscape), a decrease in the attempt rate �
(in agreement with the concept of thermally activated processes) and a decrease
in the parameter � (at high levels of supercooling, the internal time � approaches
the absolute time t).

3. some critical temperature Ter exists at which the energy landscape becomes
homogeneous. The location of the critical point (about 10 K above Tg) is in fair
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agreement with data provided by fitting observations in mechanical tests and with
predictions of the mode-coupling theory.
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